
CycleNER: An Unsupervised Training Approach for Named
Entity Recognition

Andrea Iovine∗
University of Bari Aldo Moro,, Italy

andrea.iovine@uniba.it

Anjie Fang
Amazon.com, Inc.,, USA

njfn@amazon.com

Besnik Fetahu
Amazon.com, Inc.,, USA
besnikf@amazon.com

Oleg Rokhlenko
Amazon.com, Inc.,, USA
olegro@amazon.com

Shervin Malmasi
Amazon.com, Inc.,, USA
malmasi@amazon.com

ABSTRACT
Named Entity Recognition (NER) is a crucial natural language un-
derstanding task for many down-stream tasks such as question
answering and retrieval. Despite significant progress in develop-
ing NER models for multiple languages and domains, scaling to
emerging and/or low-resource domains still remains challenging,
due to the costly nature of acquiring training data. We propose
CycleNER, an unsupervised approach based on cycle-consistency
training that uses two functions: (i) sentence-to-entity – S2E and
(ii) entity-to-sentence – E2S, to carry out the NER task. CycleNER
does not require annotations but a set of sentences with no entity
labels and another independent set of entity examples. Through
cycle-consistency training, the output from one function is used as
input for the other (e.g. S2E → E2S) to align the representation
spaces of both functions and therefore enable unsupervised training.
Evaluation on several domains comparing CycleNER against super-
vised and unsupervised competitors shows that CycleNER achieves
highly competitive performance with only a few thousand input
sentences. We demonstrate competitive performance against super-
vised models, achieving 73% of supervised performance without
any annotations on CoNLL03, while significantly outperforming
unsupervised approaches.

CCS CONCEPTS
• Computing methodologies→ Information extraction; Nat-
ural language generation; Unsupervised learning.

KEYWORDS
natural language processing, named entity recognition, cycle-
consistency training, unsupervised training

ACM Reference Format:
Andrea Iovine, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, and Shervin
Malmasi. 2022. CycleNER: An Unsupervised Training Approach for Named
Entity Recognition. In Proceedings of the ACM Web Conference 2022 (WWW

∗ This research was done during an internship at Amazon.

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs International 4.0 License.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9096-5/22/04.
https://doi.org/10.1145/3485447.3512012

’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3485447.3512012

1 INTRODUCTION
Named Entity Recognition (NER) is a core NLP task, being applied
in Web search [4], conversational agents [35], and Relation Ex-
traction [1], with increasing adoption in specialized domains like
medicine [19, 30], analysis of historical collections [9], etc.

NER approaches are typically trained in a fully supervised man-
ner. The NER training data consists of token-level annotations,
where each token is annotated according to a NER class taxonomy
(e.g. PER, ORG, O, etc.). While there are significant annotation ef-
forts for popular domains like news [23], annotations for specialized
domains, e.g. medicine, are difficult to obtain due to: (i) annotator
training being complex and time consuming, with domain knowl-
edge acquisition being key (e.g. that “HKE6” is a Gene), and (ii)
token-level annotations from diverse domains at scale being costly.

Sentences Entities Entities Sentences

S-cycle E-cycle

Generation
Step

Training
Step

Figure 1: Overview of the two CycleNER tasks.

Unsupervised NER methods can help alleviate some of these
requirements. Existing unsupervised approaches are based on com-
plex hand-crafted rules, or rely on entity information from pre-
existing lexicons or knowledge bases (e.g. [3, 14]). However, it is
challenging to create rules and lexicons for entities from special
domains, and even harder for low-resource languages. In this paper,
we propose CycleNER, an unsupervised approach for training NER
models using unannotated sentences, and very small named entity
samples that are independent from the sentences. CycleNER has two
components: (i) sentence-to-entity (S2E), and (ii) entity-to-sentence
(E2S). S2E extracts entities given a sentence, while E2S generates a
sentence given input entities. S2E and E2S are implemented using
sequence-to-sequence transformer architectures since this allows
bi-directional conversion between sentences and entities. These
two components are jointly trained via two cycles (as shown in
Figure 1): (1) sentence learning cycle (S-cycle) and (2) entity learn-
ing cycle (E-cycle). Specifically, sentences are the input and output

2916

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3485447.3512012
https://doi.org/10.1145/3485447.3512012

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Andrea Iovine, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, and Shervin Malmasi

for the S-cycle, while entities are the same for the E-cycle. In each
cycle, one component first generates the inputs and the other com-
ponent is then trained using these generated inputs. In this way, two
components are trained effectively and their representation spaces
are aligned. Compared to the traditional NER training approach,
cycle-consistent training used unlabeled data and is therefore unsu-
pervised. This data can be much cheaper to obtain than traditional
supervised datasets.

We experiment with several NER benchmarks, i.e. CoNLL03,
WNUT17, OntoNotes 5.0, and BioCreative II BC2GM. We first ver-
ify that the sequence-to-sequence architecture, i.e. T5 [22], allows
us to effectively extract entities from sentences. Since CycleNER
implements NER by two-cycle training, which is different from the
traditional token classification, we experiment with different train-
ing strategies.We evaluate themodel by setting different numbers of
sentences and entity examples, and compare it to SOTA NER results.
Results show that our CycleNER can achieve competitive perfor-
mance compared to supervised approaches. For example, when us-
ing a thousand entity examples, CycleNER can achieve 0.686 (72.7%
of SOTA) and 0.613 (66% of SOTA) in CoNLL03 and OntoNotes 5.0,
respectively. Our contributions are summarized as follows:

• We propose CycleNER, a novel unsupervised training approach.
• We implement CycleNER using two encoder-decoder architec-
tures, E2S and S2E.

• We study how to effectively train NER using CycleNER.
• We show through an ablation study that our approach increases
performance as more sentence or entity examples are provided.

• We compare our approach against several supervised and unsu-
pervised baselines, achieving competitive results.

2 RELATEDWORK
Supervised NER: NER is typically cast as a supervised learning
task, with most of the state-of-the-art approaches relying on deep
recurrent models [10, 21], convolution based [16], or pre-trained
transformer architectures [8, 32]. These models achieve highly sat-
isfactory NER performance on typical benchmarking datasets like
CoNLL. Yet, the results achieved on CoNLL do not transfer across
domains [17], and supervised data from target domains is necessary.

While NER is typically performed through sequence labelling, re-
cent approaches have cast this problem as a sequence-to-sequence
(seq2seq) task. Zhu et al. [36] use a Bi-LSTM model to encode sen-
tences and an LSTM+CRF to generate the output entities from an
input sentence. Compared against several supervised baselines, the
approach has proven to be effective. Similarly, Straková et al. [26],
tackle the problem of nested NER, where for a token all possible en-
tity labels are generated. Arguably, recent advances in pre-training
seq2seq transformer models, like T5 [22] or BART [12], can be used
to perform NER more effectively than recurrent models (LSTMs).

Unsupervised NER: Unsupervised approaches typically rely
on hand-crafted rules and pre-obtained lexicons. Etzioni et al. [3]
extract entities according to syntactic pattern matches. Zhang and
Elhadad [34] propose an unsupervised approach that is applied on
the medical domain. The approach first obtains seed entities from
an external source, then identifies entities from sentences through
chunking and using inverse document frequency. Similarly, Liang
et al. [14] propose to generate distant labels using knowledge

bases and use these labels to improve supervised NER training. Liu
et al. [15] also use a knowledge base to train a NER model (KALM)
by identifying whether a word in a sentence is from knowledge
base or a general dictionary. While these methods highly rely on
external knowledge bases, CycleNER aims at using very limited
entity samples, without the need of external resources. In [28],
a neural Hidden Markov Model (NeuralHMM) is proposed for
token annotation. It estimates the probability distribution of the
latent classes using the Baum-Welch algorithm. To do so, it relies
on a set of lexical, morphological and syntactic features extracted
using neural networks. Morphological features are extracted using
CNN, whereas the sentence’s context is captured using LSTMs.
This approach is shown to be effective for POS tagging. Both POS
tagging and NER can be cast as sequence labeling problems, and
therefore we consider this approach as an unsupervised baseline.

Cycle-consistency Training: First introduced in neural ma-
chine translation (NMT) [11, 18, 24], cycle-consistency training has
been applied to align the latent spaces of auto-encoders trained
on different languages, such that for a few seed words and their
corresponding translations, their representations are aligned. This
allows to train NMT models without parallel datasets. Recently,
Guo et al. [5] proposed CycleGT, which jointly learns graph-to-text
and text-to-graph tasks. CycleGT is trained using non-parallel data,
consisting of textual snippets and graph triples. To solve the multi-
ple mapping problem between text and graph modalities, Guo et al.
[6] propose a conditional variational auto-encoder to transform the
surjective function into an implicit bijection.

Contrary to previous works, our approach does not require ad-
versarial training or denoising auto-encoder strategies. Instead, we
exploit pre-trained transformer models as a means to regularize the
training of CycleNER. Furthermore, contrary toMohiuddin and Joty
[18], our cycle-consistency training does not use two latent spaces,
but rather, the output of each models (S2E or E2S) is fed as input to
each other to generate intermediate sentences or entity sequences.

Our approach transfers the intuitions from Lample et al. [10]
and Guo et al. [5]. Unlike Guo et al. [5], we are not constrained on
having different modalities in order to perform cycle-consistency
training, since we treat NER as a text-to-text generation task.

3 CYCLE-CONSISTENCY NER
We formulate CycleNER as an unsupervised cycle-consistency learn-
ing problem, outlining the intuition, the required data and tasks.

Cycle-consistency learning involves simultaneously learning a
forward and inverse transformation of data. This approach can be
applied to unannotated non-parallel data [37] to learn mapping
functions in an unsupervised setting. We propose to apply this
framework for NER, using non-parallel entities and sentences, and
training generative models to transform sentences to entities, and
vice versa.

Unsupervised NER Data: CycleNER relies on non-parallel
data, i.e. a set of sentences S = {s1, . . . , sn }, where each sentence
si can mention zero or more entities, and a set of entity sequences
Q={⟨e1,1 . . . , e1,k ⟩, . . . , ⟨em,1, . . . , em,l ⟩}, where each sequence
⟨ei,1, . . . , ei,k ⟩ consists of zero or more entities. Specifically, we
use an entity sequence to represent entities contained in a sentence.
The two sets S and Q are unannotated, i.e. S does not have entity

2917

CycleNER: An Unsupervised Training Approach for Named Entity Recognition WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

EU rejects German call to boycott British lamb
Organization Miscellaneous Miscellaneous

EU<sep> Organization <sep>
German <sep> Miscellaneous <sep> British <sep> Miscellaneous

Figure 2: Entity sequence q format from sentence s.

annotations and Q is an independent set of entity sequences. The
only prerequisite is that the entity distribution appearing in S and
Q have some overlap.

Training Tasks: Given S and Q , in CycleNER we define two
main tasks in CycleNER:
(1) Sentence-to-Entity (S2E): For a sentence s ∈ S , S2E outputs an
entity sequence q′. This represents the NER task in CycleNER, e.g.:

(2) Entity-to-Sentence (S2E): For an input entity sequence q ∈ Q ,
E2S generates an output sentence s ′ containing the entities in q, e.g.:

4 CYCLENER: UNSUPERVISED NER
Figure 3 shows an overview of CycleNER, where S2E and E2S are
used to implement S- and E-cycles, which ensure cycle-consistency
and allow us to train them in an unsupervised manner. Next, we
describe in detail S2E and E2S, and the cycle-consistency training.

4.1 Sequence-to-sequence for CycleNER
In cycle-consistency training S2E represents the inverse function of
E2S, and vice versa. To meet this requirement, S2E and E2S should
share the same input and output format, i.e. textual format. More-
over, the output should retain the information needed to easily re-
construct the input from it. In sequence labeling, a sentence is classi-
fied as a sequence of IOB tags, where the tags are neither in the same
format as the input sentence, nor they retain any token information.
Hence, sequence labeling cannot be used to implement S2E and E2S.

On the other hand, seq2seq can naturally fit this task, as it can
be used to generate entity tokens (denoted as q ∈ Q) directly from
a sentence (e.g. in [36]). First, s is passed through a seq2seq encoder,
then the decoder generates a sequence q a token at a time. Since q
contains important information about important tokens from s , it
can be to do construct a sentence in E2S.

Entity Sequence Representation in CycleNER. As shown
in Figure 2, a sentence can contain multiple entities. We propose
to use an entity sequence, q, to represent multiple entities in a
sentence in CycleNER. The entity sequence is required to contain
all entity information to enable cycle-consistency training. For this,
we first represent an entity as a combination of its surface form
and entity class in textual form. One sentence can contain multiple
entities, denoted as an entity sequence q. A special token, ⟨sep⟩,
separates different entities in q, as well as the surface forms and
class tokens within an entity e ∈ q. Figure 2 shows an example
of the proposed format. In case multiple occurrences of the same

entity are present in a sentence, q will contain the repeated entity
as many times as it appears in the sentence. Moreover, the order
of the entities in q reflects the order of them appearing in the
sentence. This guarantees that S2E can extract correct entities from
sentences. For example, given a sentence “The Amazon CEO pledged
to donate to the Amazon rainforest preservation efforts”, q should
be “Amazon ⟨sep⟩ organization ⟨sep⟩ Amazon ⟨sep⟩ location”.
Furthermore, keeping the entity order simplifies the reconstruction
of the original sentence during CycleNER.

4.2 Cycle-Consistency Training
The objective of cycle-consistency is to ensure that S2E and E2S
functions establish an effective mapping between sentences and
entities. We follow the principles of Iterative Back-Translation
(IBT) [5, 7] to incrementally train the two functions, namely the
output of one function is used as input to train the other function.
We denote with θ and ϕ the parameters of S2E and E2S, respectively.
The training is divided into two main cycles: S-cycle and E-cycle.

S-cycle Training. In this cycle, we generate first a synthetic set
of intermediate entity sequences by applying S2E to the input S ,
namely S2E(S) → Q ′, highlighted by the red box in Figure 3. The
synthetic training tuples ⟨S,Q ′⟩ are used to train E2S in a super-
vised manner. Specifically, in this cycle E2S is trained to generate
synthetic sentences S ′ that are similar to S (highlighted in the blue
box). For instance, in Figure 3 (a), in the first step S2E receives an
input sentence s , and produces the output entity sequence q′. In
the second step, E2S receives the synthetic q′ and generates back a
synthetic sentence s ′ that ideally should mimic the original input
sentence s , as shown in the example below:

This concludes the S-cycle training, at the end of which, similar
to Guo et al. [5] we compute the reconstruction loss, i.e. the average
cross-entropy loss between the input S and the generated S ′:

Lϕ (S, S
′) = −

∑
s ∈S

∑
i< |s | p(si) logд(s ′i)
|s | ∗ |S |

(1)

where p(·) and д(·) represent the real and predicted token probabil-
ities. Whereas, |s | represents the sentence length, si and s ′i are the
i-th token in s and s ′, and |S | is the number of input sentences.

E-cycle Training. In this cycle, the input are entity sequences
Q , which are pushed through E2S to generate a set of synthetic
sentences S ′, namely E2S(Q) → S ′, cf. highlighted boxes in red in
Figure 3 (b). The E-cycle trains S2E to generate the entity sequences
Q ′ that are similar to Q . First, for an entity sequence q a synthetic
sentence s ′ is generated via E2S, which is then fed into S2E to
generate the synthetic q′, that is identical or highly similar to q:

2918

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Andrea Iovine, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, and Shervin Malmasi

Duran <sep>
Person <sep>
Reuters <sep>
Organization

s: "I'm not retiring,
Duran told Reuters "

s': Duran told Reuters:
We have no plans to

sell the shares"

1. Generation Step

2. Training Step

In
te

rm
ed

ia
te

1. Generation Step

2. Training Step

In
te

rm
ed

ia
te

(a) S-cycle (b) E-cycle

Australia beat Sri
Lanka 2-1 in the

World Series cricket
match on Wednesday

q: World Series <seq> miscellaneous
<seq> Australia <seq> location
<seq> Sri Lanka <seq> Location

q': World Series <seq> miscellaneous
<seq> Australia <seq> location

Update
with

Cycle Start Cycle Start

Cycle End Cycle EndUpdate
with

Figure 3: Training cycles and steps in CycleNER.

Similar to S-cycle, we compute the reconstruction loss between
the input Q and the synthetic Q ′ in the E-cycle:

Lθ (Q,Q
′) = −

∑
q∈Q

∑
i< |q | p(qi) logд(q′i)
|q | ∗ |Q |

(2)

where |q | and |Q | are the fixed sequence length (i.e. the number
of surface form tokens in q) and total number of entity sequences.
qi and q′i are the i-th token in q and q′. Note that since the entity
sequence contains both the surface form and entity type, Lθ (Q,Q ′)

reflects the loss of both the surface form and entity type.
Joint training. The two cycles are conducted iteratively. Op-

erationally, the following steps are executed in sequence for each
batch of training data:

• S-cycle Step 1 (see Figure 3): a batch of synthetic sequences Q ′

is generated by S2E giving batch of training sentences S .
• S-cycle Step 2: The parameters of E2S are trained using synthetic
training tuples ⟨Q ′, S⟩.

• E-cycle Step 1: A batch of synthetic sentences S ′ is generated
by E2S giving a batch of training entity sequences Q .

• E-cycle Step 2: The parameters of S2E are trained using syn-
thetic training tuples ⟨S ′,Q⟩.

S2E leverages Q to recognize entities and their contexts in S ,
while E2S learns to generate plausible sentences using the entries
inQ . The parameter spaces of the two tasks are trained to align each
other, such that from s we can generate entity sequences q, and vice
versa. Cycle-consistency enforces the reconstruction of the original
input sentence s from the generated entity sequence q′, or generat-
ing back the entity sequence q from an output sentence s ′. This en-
sures that S2E and E2S can learn quickly even in the beginning stage.
Accordingly, E- and S-cycles are equally important for CycleNER.

In order to select the best iteration during training (stopping
criterion), we use the loss of E-cycle on a development set. This
choice is futher discussed and verified in Section 7.2. Finally, it
is worth noting that during the S-cycle, the parameters θ are not
updated, due to the fact that the generated synthetic outputs at
the end of Step 1 are non-differentiable. Effectively, Lϕ can only
be back-propagated to E2S. Similarly, during the E-cycle, ϕ is not
updated, and Lθ is only back-propagated to S2E. This is similar to
previous applications of IBT [5].

5 DATA
5.1 NER Datasets
We consider several NER benchmarking datasets across various
domains to sample sentences and entity sequences for training Cy-
cleNER. Table 1 shows an overview of the datasets. All the datasets
are in English language.
CoNLL [27] is a common NER benchmark dataset, consisting of
textual snippets from the news domain.
WNUT [2] contains textual snippets extracted from social media,
e.g. Twitter. This dataset represents a challenging benchmark with
novel and emerging entities.
OntoNotes [31] contains mostly sentences from news, Web data
and conversational speeches. Specifically, we use the version that
includes a taxonomy of 18 NER classes.
BioCreative II BC2GM [25] consists of sentences extracted from
medical articles, with genes as the annotated named entities. This
dataset is very challenging, given that the surface form of gene
sequence entities can be highly complex.

Dataset Type # Sent # Token Sent Len # Tags

CoNLL
Train 14,041 203,621 14.50

4Dev 3,250 51,362 15.80
Test 3,453 46,435 13.45

WNUT
Train 3,394 62,730 18.48

6Dev 1,009 15,733 15.59
Test 1,287 23,394 18.18

OntoNotes
Train 115,864 2,200,868 19.00

18Dev 15,680 304,701 19.43
Test 12,217 230,118 18.84

BC2GM
Train 12,574 355,405 28.27

1Dev 2,519 71,042 28.20
Test 5,038 143,465 28.48
Table 1: Dataset statistics.

5.2 Entity Sequences
To train the E2S function, we feed it named entity sequences as
input. The length of the entity sequences should reflect the distri-
bution of sequences in our sentences. We compare two methods
of acquiring entity sequences. The first solution directly uses a
small portion of entity sequences from the ground-truth, which
ensures high data quality, and helps to test our approach in an ideal
scenario. In the second solution, we select a small sample of entities

2919

CycleNER: An Unsupervised Training Approach for Named Entity Recognition WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Dataset GQ SQ
CoNLL Kragujevac ⟨sep⟩ location ⟨sep⟩ Stanojlovic ⟨sep⟩ person National Tennis Centre ⟨sep⟩ location

WNUT Justin Timberlake ⟨sep⟩ person ⟨sep⟩ Beyonce ⟨sep⟩ person
⟨sep⟩ Until the End of Time ⟨sep⟩ creative work Mayflower ⟨sep⟩ group ⟨sep⟩ Richard Smith ⟨sep⟩ person

OntoNotes
This year ⟨sep⟩ date ⟨sep⟩ Japan ⟨sep⟩ geopolitical ⟨sep⟩
US ⟨sep⟩ geopolitical ⟨sep⟩ Silicon Valley ⟨sep⟩ location
⟨sep⟩ the United States ⟨sep⟩ geopolitical

Ecuadorian ⟨sep⟩ group ⟨sep⟩ Colombia ⟨sep⟩
geopolitical ⟨sep⟩ November ⟨sep⟩ date

BC2GM NFI proteins ⟨sep⟩ gene ⟨sep⟩ TG ⟨sep⟩ gene ⟨sep⟩
NFI - DNA ⟨sep⟩ gene

C protein ⟨sep⟩ gene ⟨sep⟩ Protein kinase C ⟨sep⟩ gene

Table 2: GQ and SQ entity sequence examples.

from the ground truth and generate synthetic entity sequences.
This represents a realistic scenario where we only have a small size
of entity examples. We expect that synthetic sequences can work
similarly as ground truth sequences.
1. Ground truth Entity Sequences – GQ. From each sentence in
the NER datasets, we extract the entity sequences.We then train E2S
on the extracted sequences. The GQ entity sequence are noise-free
and consist of only entity sequences that appear in real-world data.
2. Synthetic Entity Sequences – SQ. Starting from a set of seed
entities extracted from ground-truth, we construct sequences by
pairing seed entities with other entities that are semantically sim-
ilar to them. We calculate a vector representation for each entity
using pre-trained word embeddings [20], where each vector is the
average of all word embeddings from an entity. Then, we group
similar entities together into an sequence by calculating their cosine-
similarity. This approach guarantees that the generated sequence
can be mapped back to a plausible sentence by E2S. When creating
the entity sequences, we choose the length (i.e. # of entity in an
sequence) by considering the length distribution from the original
training set. Our preliminary experiment shows that this step is not
strictly necessary. It ensures that S2E can generate entity sequences
of different sizes. This approach can be used to generate sequences
for a real application with a small size of entity examples. Compared
to traditional parallel NER annotations, these entity examples can
be easy to access.

5.3 CycleNER Training Data
CycleNER requires a set of sentences and a set of entity sequences.
From the different NER datasets, we construct varying sets of train-
ing data, where we vary the number of sentences and entity se-
quences used for training. For the sake of clarity, we introduce
a naming convention to distinguish the different dataset config-
urations. Namely, Dataset/10k/10kSQ , where the first portion
represents the dataset, followed by the number of sentences and
entity sequences in thousands, and the means by which we extract
the entity sequences. Table 3 shows the different configurations we
use for training and development data, where we vary the amount
of sentences and entity sequences we use to train CycleNER.

6 EXPERIMENTAL SETUP
This section describes the baselines, and the setup of our approach.
Furthermore, we explain evaluation scenarios that we want to vali-
date in our experimental evaluation.

Dataset Configuration Set

CoNLL /1k/1kGQ ; /2k/1kGQ ; /14k/14kSQ train
/3.2k/1kGQ ; /3.2k/2kSQ dev

WNUT /1k/1kGQ ; /3.4k/1kGQ ; /3.4k/3.4kSQ train
/1k/500GQ ; /1k/500SQ dev

OntoNotes /5k/5kGQ ; /116k/2kGQ ; /116k/116kSQ train
/15.7k/5kGQ ; /15.7k/5kSQ dev

BC2GM /1k/1kGQ ; /12.5k/1kGQ ; /12.5k/12.5kSQ train
/2.5k/1kGQ ; /2.5k/1kSQ dev

Table 3: Dataset configurations with varying number of sen-
tences and entity sequences.

6.1 Baselines and Our Approach
CycleNER: For our approach, S2E and E2S represent seq2seq
models. We implement them using pre-trained T5 [22] models.
BERT: This represents a competitive supervised baseline, and can
be considered as the upper bound for NER performance of unsu-
pervised models. We fine-tune a pre-trained BERT [8] for NER.
NeuralHMM: This represents an unsupervised baseline, which
trains a neural Hidden Markov Model using sentences as input only.
NeuralHMM requires only sentences for training, and it does not
require entity information for training. Its output space is a set of
latent classes, the number of which can be set as a learning param-
eter. Additionally, a mapping strategy is required to link the latent
classes to entity classes. To do this, the co-occurrence between each
latent class and entity class in the test set is measured, and the most
frequently co-occurring latent class with an entity class is assigned.
Lexical Matcher:We extract the named entities from the training
set and their corresponding type, which then using a lexical matcher
(surface form match) are used to identify entities in the test set.
This represents a basic unsupervised baseline, and fails for entities
with ambiguous surface forms.
BERT-Matcher:We also train a weakly-supervised BERT model
using external entity knowledge, a common approach in the lit-
erature. We employ a similar method as Meng et al. [17] to first
generate gazetteer data (3.9m entities) for CoNLL and WNUT. We
then apply the lexical matcher and the gazetteer data to create
weakly-annotated parallel NER training data from CONLL and
WNUT sentences. We train our NER models using BERT with these
datasets. Specifically, we check whether a given sentence contains
an entity entry from the gazetteer and create parallel entity anno-
tation for the sentence. However, this gazetteer data is noisy, e.g.

2920

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Andrea Iovine, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, and Shervin Malmasi

BiLSTM T5 LUKE [32] T-NER [29]
CoNLL 0.551 0.913 0.943 -
WNUT - 0.552 - 0.585

Table 4: NER performance of supervised models for NER as
a sequence generation task, compared against the SOTA for
each dataset.

an entity entry can belong to multiple entity classes. Therefore, we
do not use the gazetteer for CyclerNER.

6.2 Evaluation Scenarios
We empirically assess CycleNER under the following scenarios:
Scenario 1: Can the NER task be cast as a sequence generation
task using our proposed sequence format (see Figure 2)?
Scenario 2:Does unsupervised training work?What is the relation
between the reconstruction loss and NER F1?
Scenario 3: How does the number of sentences and entity se-
quences impact CycleNER?
Scenario 4: How does CycleNER fare in contrast to supervised
NER models?

To answer evaluation scenarios (1)–(3) we use the CoNLL and
WNUT datasets. For scenario (4) we use all the datasets, namely the
different configurations (cf. Table 3). We measure NER performance
using the micro-averaged F1 score.

7 RESULTS
7.1 NER as a Sequence Generation
In the first evaluation scenario, we assess how seq2seq models
address NER. As mentioned in Section 4.1, given a sentence, the
seq2seq model outputs the mentioned entities with their types. We
mainly verify the suitability of casting NER as a sequence gener-
ation task, given that it is one of the fundamental principles in
training CycleNER in an unsupervised manner.

Table 4 shows the performance of a BiLSTM and T5model trained
on the entire dataset. The training is done in a supervised manner.
Comparing to BiLSTM, we note that T5 has superior performance
on both datasets1. This is attributed mainly to the sophisticated
architecture of T5 and its extensive pre-trained knowledge, which
allows it to better capture contextual information.

When comparing the T5 sequence model to the state-of-the-
art results, T5 achieves very similar results. For both CoNLL and
WNUT, T5 has only a∼3% drop in terms of F1. These results validate
our hypothesis that NER can be cast as a sequence generation task
and our entity sequence representation is effective.

7.2 CycleNER Training Behavior
In the standard supervised setting, training is stopped whenever a
given loss function (e.g. cross-entropy) converges to a minimum.
However, in CycleNER, training is done in an unsupervised manner.
Hence, determining when the model, namely the two functions S2E
and E2S, are fully trained is not trivial. To determine when training
has converged, we analyze the relation of the two reconstruction
losses that CycleNER minimizes:Lθ from the E-cycle, andLϕ from
the S-cycle. As the two cycles are used to train the two functions,
1For WNUT, BiLSTM produces poor results, hence, we omit the results from the table.

(a) Varying number of entity sequences
#Q 100 1k 1.5k 2k 3k 14k

CoNLL GQ 0.619 0.814 0.823 0.842 0.852 0.885
(#S = 14k) SQ 0.584 0.673 0.637 0.667 0.676 0.686

#Q 500 1k 1.5k 3.4k

WNUT GQ 0.327 0.338 0.316 0.332
(#S = 3.4k) SQ 0.349 0.320 0.321 0.336

(b) Varying the number of sentences
#S 1k 1.5k 2k 3k 14k

CoNLL GQ 0.804 0.797 0.825 0.823 0.814
(#Q = 1k) SQ 0.609 0.616 0.613 0.628 0.673

#S 500 1k 1.5k 3.4k

WNUT GQ 0.282 0.323 0.335 0.338
(#Q = 500) SQ 0.251 0.292 0.269 0.320

Table 5: F1 performance varying the number of training (a)
entity sequences and (b) sentences. #S is the number of train-
ing sentences, #Q is the number of training entity sequences.

S2E and E2S, convergence in both cases is important to have stable
and optimal performance for CycleNER.

We assess the best stopping criterion by training CycleNER
separately on the CoNLL and WNUT datasets, and consider both
entity sequence generation approaches (i.e. GQ and SQ). Namely,
we use the following configurations for training: CoNLL/14k/1kGQ ,
CoNLL/14k/1kSQ , WNUT/3.4k/1kGQ , and WNUT/3.4k/1kSQ . The
relatively small size of entity sequences allows us to quickly
conduct experments.

Figure 4 shows the reconstruction losses at different epochs for
the S- (blue line) and E- (orange line) cycles on the development set
(cf. Table 3). Alongside the loss values we plot the corresponding
F1 scores. These high F1 scores (e.g. ∼0.8 for CONLL and ∼0.4 for
WNUT) suggest that CycleNER is effective during training.

Figure 4 shows a clear relationship between the loss computed
in the E-cycle and F1. For CONLL, we obtain a high negative
correlation as measured through Pearson’s correlation coefficient,
with ρ = −0.81 for GQ, and with ρ = −0.87 for SQ. For WNUT,
we observe similar correlations, with a high negative correlation
for GQ with ρ = −0.73, whereas a moderate correlation is
observed for SQ with ρ = −0.59. Contrary to the E-cycle, there
is no clear relationship between the S-cycle loss and F1, with
an average correlation coefficient of ρ = 0.41 over CoNLL and
WNUT, respectively for both GQ and SQ. This is because that the
reconstructed sentence in the S-cycle can be different from the
original one although they contain the same entities.

We conclude that the E-cycle loss can be used to to guarantee
a optimal NER performance. Therefore, we use it as the stopping
criterion for all subsequent tests described in Sections 7.3 and 7.4.

7.3 Impact of Training Data Size
In this evaluation scenario, we assess the impact of the training
data used for CycleNER. Table 5 shows the impact of training data

2921

CycleNER: An Unsupervised Training Approach for Named Entity Recognition WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Development set F1ℒΘ: E-cycle development set lossℒΦ: S-cycle development set loss

(a) CoNLL using GQ (b) CoNLL using SQ (c) WNUT using GQ (d) WNUT using SQ

Figure 4: Development set loss of Lθ and Lϕ and F1 score per epoch.

for CoNLL and WNUT datasets, where we vary either both the
number of sentences (S) or entity sequences (Q) used for training.

Number of Entity Sequences. Table 5 (a) shows the perfor-
mance of CycleNER when trained on a fixed number of sentences,
namely 14k for CoNLL, and 3.4k for WNUT, while varying the num-
ber of entity sequences. At a high level we note the good perfor-
mance of CycleNER using very small amounts of entity knowledge.

For CONLL, when using 100 GQ entity sequences, the model
performs modestly, with F1 = 0.619. However, when the number
of entity sequences is increased to 1k, then we see a nearly 20% ab-
solute improvement in terms of F1. Adding more entity sequences
results in gradual performance increase, however, the rate of im-
provement is slightly lower. This finding is interesting, where for
sentences that are of fairly similar text genres, with relatively little
data, we can converge to the top performance using CycleNER. The
performance of SQ is lower compared to GQ, and although more
sequences enable better performance, this is not always the case,
as it can be seen between 1k and 1.5k sequences. The difference
between GQ and SQ can due to two main reasons. First, pre-trained
embedding might not effectively capture the semantic meaning of
an entity and find its similar ones. Second, given that CoNLL con-
tains sentences from news corpora, the set of entities that co-occur
in a sentence is often determined by newsworthiness factors, and
are not correlated with entity relatedness solely.

Contrary to the CoNLL dataset, for WNUT, the performance
difference between entity sequences generated according to GQ
or SQ is marginal. A possible explanation for this difference w.r.t
CoNLL, is that WNUT consists of text snippets coming from social
media, and thus, the set of entities that co-occur in a sentence is
much more diverse, and less controlled as in news media.

For both datasets, CycleNER is able to maintain reasonable
effective NER performance with a small size of entity examples.
In particular, CycleNER achieved 0.34 F1 (vs. T-NER’s 0.585 [29])
using only 500 SQ for WNUT, where entities are from social media
and are highly complex.

Number of Sentences. Table 5 (b) shows the performance of
CycleNER when trained on a fixed set of entity sequences, namely
1k and 500, for CoNLL and WNUT, respectively, while at the same
time varying the number of input sentences.

As in the case of varying entity sequences, adding sentences
translates into better NER performance. For CONLL, the difference
is nearly 2% absolute points improvement for GQ, and 7% for SQ

sequences. While, in the case of WNUT, the improvements are with
5% and 7%, for GQ and SQ, respectively.

Although the gains are significant given the scale of the datasets,
the improvements are more moderate than when varying entity
sequences. This is intuitive, considering that in Table 5 (a) we show
that with 1k entity sequences, the model achieves a performance
that is close to its peak. At the same time, we note that the impact
of additional sentences for training is much larger for SQ.

In summary, more data helps overall to improve the model’s
performance.While, when comparing additional sentences or entity
sequences, we note that more entity sequences are more beneficial
for CycleNER, which allows the model to better learn the NER task.

7.4 Supervised vs. Unsupervised Approach
Table 6 shows the results of the different NER approaches defined
in Section 6.1. Apart from BERT and BERT-Matcher, which perform
NER in the standard token classification setting, the rest of the ap-
proaches are unsupervised. The SOTA row reports the performance
for each dataset from existing work. We also report the results
obtained by KALM on the CoNLL dataset, as reported in [15].

It is worth noting that NeuralHMM is trained only using sen-
tences, whereas CycleNER is trained with a fairly larger amount of
entity sequences for SQ, while for GQ this amount is much smaller.
More specifically, for CoNLL we use 1k GQ sequences (representing
7% of the total sequences), 1k for WNUT (29% of the original size),
5k for Ontonotes (4.3% of the original size), and 1k for BC2GM (8%
of the original size).

Performance Comparison. In all cases, BERT achieves the
best performance. This is intuitive given that it uses annotated data
at the token level, and thus, the loss is optimized at the token level,
allowing the model to achieve optimal performance. However, as
mentioned in the motivation of this work, obtaining such annotated
data is not always feasible and can be costly. On the contrary, BERT-
Matcher (trained using gazetteer-based weakly-annotated data)
performs worst. This is because the weakly-annotated data is too
noisy.

When comparing the performance of CycleNER and BERT across
datasets, we note that the differences are not high. For instance,
when CycleNER is trained on CoNLL/2k/1kGQ , the difference is
3.5%, which when considered that our approach is unsupervised
presents remarkable results. The gap is higher, with 17.4%, when
we use CoNLL/14k/14kSQ for training. As noted in Section 7.3,

2922

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Andrea Iovine, Anjie Fang, Besnik Fetahu, Oleg Rokhlenko, and Shervin Malmasi

CoNLL WNUT OntoNotes BC2GM
Approach CoNLL P R F WNUT P R F OntoNotes P R F BC2GM P R F
SOTA Yamada et al. [33] 0.943 Ushio and Camacho-Collados [29] 0.585 Li et al. [13] 0.927 Smith et al. [25] 0.872
BERT /1k 0.844 0.876 0.860 /1k 0.482 0.369 0.418 /5k 0.756 0.823 0.788 /1k 0.651 0.713 0.681
BERT-Matcher full 0.147 0.415 0.217 full 0.029 0.162 0.050 - - - - - - - -
NeuralHMM full 0.544 0.283 0.372 - - - - - - - - full 0.350 0.212 0.264
Lexical Matcher /1k/1kGQ 0.830 0.279 0.418 - - - - /5k/5kGQ 0.415 0.410 0.412 /1k/1kGQ 0.528 0.135 0.215
KALM 0.86 - - -

CycleNER
/2k/1kGQ 0.814 0.837 0.825 /3.4k/1kGQ 0.322 0.355 0.338 /116k/5kGQ 0.552 0.798 0.653 /12.5k/1kGQ 0.337 0.541 0.415
/14k/14kSQ 0.750 0.632 0.686 /3.4k/3.4kSQ 0.339 0.360 0.349 /116k/116kSQ 0.540 0.709 0.613 /12.5k/12.5kSQ 0.332 0.443 0.380

Table 6: Comparison of the performance of the different approaches. The first column in each dataset sub-table represents the
dataset used to train the respective models. Refer to Table 3 for the datasets used by CycleNER and Lexical Matcher. For the
supervised BERT baseline, we report the size of the parallel data.

co-occurrence of entities in the news domain is determined by the
newsworthiness of entities. Hence, SQ sequences, may introduce
infrequent sequences in news.

We note similar observations across the different datasets, such
as WNUT, OntoNotes, where the gap is 7%, and 13.5%, respectively.
For both datasets, the gap between GQ and SQ entity sequences is
much smaller, and in some cases SQ sequences allow the model to
have better performance, as is the case for WNUT.

On the BC2GM dataset, the gap between BERT and CycleNER
increases. This is due to the fact that the T5 model does not con-
tain sufficient pre-trained knowledge, and hence cannot correctly
recognize entity boundaries for training S2E and E2S. Often sur-
face forms (e.g. "HKE6") of named entities in BC2GM are tokenized
into many subword units, due to the fact that such tokens are not
present in the pretraining corpus of T5, resulting in much poorer
performance. In this case, we note that since BERT performs token
level classification, although far from the state of the art perfor-
mance, the model can better learn to predict the correct NER class
for each token.

Finally, the performance of NeuralHMM and Lexical Matcher
is quite poor, which emphasizes the difficulty of conducting this
task in an unsupervised fashion. For many of the datasets, e.g.
WNUT, OntoNotes, NeuralHMM performs extremely poorly, hence,
the results are omitted from the table. Liu et al. [15] report that
their unsupervised KALM model can achieve a score of F1=0.86 for
CoNLL, while our CycleNER achieves a comparable score of F1=0.83.
Considering that CycleNER does not leverage large knowledge
bases, its performance is still competitive using only a small entity
sample.

8 ANALYSIS OF CYCLENER’S BEHAVIOR
Unseen Entities. When trained on large data (e.g. OntoNotes),
CycleNER learns to extract new patterns of named entities and new
entity classes that are not annotated in the original ground-truth.

Figure 5 shows the output of CycleNER, which predicts that
“festival” is an event, “riverside park” as a location, and “black
pearl wax apples” as a product. Despite the fact that these words
were not annotated in the ground-truth, CycleNER determines that
they are entities based on the context in which they appear, and
on similar entities appearing in the ground-truth. This shows that
unsupervised NER and seq2seq offers several advantages that can
circumvent annotation qualities present in an NER dataset.

 The festival, in the town's riverside park, was
Event Location

Product

festival <sep> Event <sep> riverside park <sep> Location
<sep> black pearl wax apples <sep> Product

 held to promote black pearl wax apples...

Figure 5: OntoNotes data and CycleNER output.

Error Analysis. The most frequent errors in CycleNER are re-
lated to span detection. This is especially the case when the input
sentence contains no entities. In such scenarios, S2E attempts to
generate entity sequences with at least one entity.

To better understand this type of behavior, we exclude from the
test set all sentences that contain no entities and re-calculate the
performance metrics. This results in a 4% absolute increase in terms
of F1 for CoNLL, and 8–12% for the other three datasets. Compara-
tively, BERT as the best performing baseline, sees an increase of 3%
for CoNLL and 2–5% for the rest of the datasets.

This is a limitation in our work, as sentences without entities
impact both S2E and E2S training. There are two possible directions
to address this issue: First, for sentences without entities, S2E can
be trained to generate a special token. One drawback of such an
approach is to reconstruct back the input sentence in E2S, which
would lack the context to map a single special token to all the possi-
ble sentences that have no entities. This prerequisite is described in
Guo et al. [6] where a bijective mapping between the twomodalities
is necessary. We aim to solve this issue in future work.

9 CONCLUSION
We presented CycleNER, a novel unsupervised NER approach that
uses cycle-consistency training to learn an effective mapping be-
tween sentences and entities in two cycles by training S2E and E2S.
During the two cycles, the model learns how to reconstruct sen-
tences and entities jointly and interactively. To our best knowledge,
this is the first time that cycle-consistency has been applied for NER.

Through extensive experimental evaluations, we confirm the
effectiveness of CycleNER on four different datasets, covering dif-
ferent domains (BC2GM, medicine), and data quality (WNUT). To
ensure optimal training, we devise a stopping criterion that relies
on the loss of E-cycle, which on most of the datasets has a high
negative correlation with the actual NER performance. We showed
that CycleNER achieves competitive performance w.r.t supervised

2923

CycleNER: An Unsupervised Training Approach for Named Entity Recognition WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

and baselines like BERT. On different datasets, such as CoNLL, Cy-
cleNER reaches 72.7% performance of current state of the art. Since
CycleNER only requires sentences and entity examples, it has ad-
vantages on recognizing emerging and difficult entities, compared
to existing unsupervised baselines relying on external knowledege.
In practice, CycleNER can be easily applied to develop an initial NER
model and scale up the model by providing more entity examples.

REFERENCES
[1] Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder. 2018.

Adversarial training for multi-context joint entity and relation extraction. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2830–2836.

[2] Leon Derczynski, Eric Nichols, Marieke van Erp, and Nut Limsopatham. 2017.
Results of the WNUT2017 shared task on novel and emerging entity recognition.
In Proceedings of the 3rd Workshop on Noisy User-generated Text. 140–147.

[3] Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander Yates. 2005. Unsupervised
named-entity extraction from the web: An experimental study. Artificial intelli-
gence 165, 1 (2005), 91–134. Publisher: Elsevier.

[4] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. 2009. Named entity recognition
in query. In Proceedings of the 32nd Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval. ACM, 267–274.

[5] Qipeng Guo, Zhijing Jin, Xipeng Qiu, Weinan Zhang, David Wipf, and Zheng
Zhang. 2020. CycleGT: Unsupervised Graph-to-Text and Text-to-Graph Gen-
eration via Cycle Training. In Proceedings of the 3rd International Workshop on
Natural Language Generation from the Semantic Web (WebNLG+). 77–88.

[6] Qipeng Guo, Zhijing Jin, Ziyu Wang, Xipeng Qiu, Weinan Zhang, Jun Zhu,
Zheng Zhang, and Wipf David. 2021. Fork or fail: Cycle-consistent training with
many-to-one mappings. In Proceedings of International Conference on Artificial
Intelligence and Statistics. PMLR, 1828–1836.

[7] Cong Duy Vu Hoang, Philipp Koehn, Gholamreza Haffari, and Trevor Cohn. 2018.
Iterative Back-Translation for Neural Machine Translation. In Proceedings of the
2nd Workshop on Neural Machine Translation and Generation. Association for
Computational Linguistics, 18–24.

[8] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologie. 4171–4186.

[9] Kai Labusch, Preußischer Kulturbesitz, Clemens Neudecker, and David Zellhöfer.
2019. BERT for Named Entity Recognition in Contemporary and Historical
German. In Proceedings of the 15th Conference on Natural Language Processing,
Erlangen, Germany. 8–11.

[10] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,
and Chris Dyer. 2016. Neural Architectures for Named Entity Recognition. In
Proceedings of Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologie. 260–270.

[11] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.
2018. Unsupervised Machine Translation Using Monolingual Corpora Only. In
Proceedings of International Conference on Learning Representations.

[12] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics.

[13] Xiaoya Li, Xiaofei Sun, Yuxian Meng, Junjun Liang, Fei Wu, and Jiwei Li. 2020.
Dice Loss for Data-imbalanced NLP Tasks. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics. 465–476.

[14] Chen Liang, Yue Yu, Haoming Jiang, Siawpeng Er, Ruijia Wang, Tuo Zhao, and
Chao Zhang. 2020. Cycle-sum: cycle-consistent adversarial lstm networks for
unsupervised video summarization. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 1054–1064.

[15] Angli Liu, Jingfei Du, and Veselin Stoyanov. 2019. Knowledge-Augmented Lan-
guage Model and its Application to Unsupervised Named-Entity Recognition. In
Proceedings of Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologie. 1142–1150.

[16] Xuezhe Ma and Eduard Hovy. 2016. End-to-end Sequence Labeling via Bi-
directional LSTM-CNNs-CRF. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics. 1064–1074.

[17] Tao Meng, Anjie Fang, Oleg Rokhlenko, and Shervin Malmasi. 2021. GEMNET:
Effective Gated Gazetteer Representations for Recognizing Complex Entities
in Low-context Input. In Proceedings of the 2021 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language

Technologies.
[18] Muhammad Tasnim Mohiuddin and Shafiq Joty. 2019. Revisiting Adversarial

Autoencoder for Unsupervised Word Translation with Cycle Consistency and
Improved Training. In Proceedings of the 2019 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human Language
Technologies. 3857–3867.

[19] Mariana L. Neves and Ulf Leser. 2014. A survey on annotation tools for the
biomedical literature. Briefings Bioinform. 15, 2 (2014), 327–340.

[20] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, AlessandroMoschitti, Bo Pang,
and Walter Daelemans (Eds.). ACL, 1532–1543.

[21] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,
Kenton Lee, and Luke Zettlemoyer. 2018. Deep Contextualized Word Represen-
tations. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language. Association for
Computational Linguistics, 2227–2237.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the Limits
of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine
Learning Research 21 (2020), 1–67.

[23] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 Shared Task: Language-Independent Named Entity Recognition. In Proceed-
ings of Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologie. ACL, 142–147.

[24] Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Improving Neural
Machine Translation Models with Monolingual Data. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics. 86–96.

[25] Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando, Cheng-Ju Kuo, I-Fang
Chung, Chun-Nan Hsu, Yu-Shi Lin, Roman Klinger, Christoph M Friedrich, Kuz-
man Ganchev, et al. 2008. Overview of BioCreative II gene mention recognition.
Genome biology 9, 2 (2008), 1–19.

[26] Jana Straková, Milan Straka, and Jan Hajic. 2019. Neural Architectures for
Nested NER through Linearization. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. Association for Computational
Linguistics, 5326–5331.

[27] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-
2003 shared task: language-independent named entity recognition. In Proceedings
of Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologie. Association for Computational
Linguistics, 142–147.

[28] Ke M Tran, Yonatan Bisk, Ashish Vaswani, Daniel Marcu, and Kevin Knight. 2016.
Unsupervised Neural Hidden Markov Models. In Proceedings of the Workshop on
Structured Prediction for NLP. 63–71.

[29] Asahi Ushio and Jose Camacho-Collados. 2021. T-NER: An All-Round Python
Library for Transformer-based Named Entity Recognition. In Proceedings of the
16th Conference of the European Chapter of the Association for Computational
Linguistics: System Demonstrations. 53–62.

[30] Leon Weber, Jannes Münchmeyer, Tim Rocktäschel, Maryam Habibi, and Ulf
Leser. 2020. HUNER: improving biomedical NER with pretraining. Bioinform. 36,
1 (2020), 295–302.

[31] Weischedel, Ralph, Palmer, Martha, Marcus, Mitchell, Hovy, Eduard, Pradhan,
Sameer, Ramshaw, Lance, Xue, Nianwen, Taylor, Ann, Kaufman, Jeff, Franchini,
Michelle, El-Bachouti, Mohammed, Belvin, Robert, and Houston, Ann. 2021.
OntoNotes Release 5.0.

[32] Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto.
2020. LUKE: Deep Contextualized Entity Representations with Entity-aware
Self-attention. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing. 6442–6454.

[33] Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, and Yuji Matsumoto.
2020. LUKE: Deep Contextualized Entity Representations with Entity-aware
Self-attention. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing. 6442–6454.

[34] Shaodian Zhang and Noémie Elhadad. 2013. Unsupervised biomedical named
entity recognition: Experiments with clinical and biological texts. Journal of
biomedical informatics 46, 6 (2013), 1088–1098. Publisher: Elsevier.

[35] Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao, Dianhai Yu, Hao Tian,
Xuan Liu, and Rui Yan. 2016. Multi-viewResponse Selection forHuman-Computer
Conversation. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. The Association for Computational Linguistics,
372–381.

[36] Huiming Zhu, Chunhui He, Yang Fang, and Weidong Xiao. 2020. Fine Grained
Named Entity Recognition via Seq2seq Framework. IEEE Access 8 (2020), 53953–
53961. Publisher: IEEE.

[37] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on computer vision. 2223–2232.

2924

	Abstract
	1 Introduction
	2 Related Work
	3 Cycle-Consistency NER
	4 CycleNER: Unsupervised NER
	4.1 Sequence-to-sequence for CycleNER
	4.2 Cycle-Consistency Training

	5 Data
	5.1 NER Datasets
	5.2 Entity Sequences
	5.3 CycleNER Training Data

	6 Experimental Setup
	6.1 Baselines and Our Approach
	6.2 Evaluation Scenarios

	7 Results
	7.1 NER as a Sequence Generation
	7.2 CycleNER Training Behavior
	7.3 Impact of Training Data Size
	7.4 Supervised vs. Unsupervised Approach

	8 Analysis of CycleNER's Behavior
	9 Conclusion
	References

